Ba Vectơ Abc Đồng Phẳng

Ba Vectơ Abc Đồng Phẳng

Cho ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Xét các vectơ \(\overrightarrow x  = 2\overrightarrow a  + \overrightarrow b ;\,\,\,\overrightarrow y  = \overrightarrow a  - \overrightarrow b  - \overrightarrow c ;\)\(\,\overrightarrow z  =  - 3\overrightarrow b  - 2\overrightarrow c \,\). Chọn khẳng định đúng?

Cho ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) không đồng phẳng. Xét các vectơ \(\overrightarrow x  = 2\overrightarrow a  + \overrightarrow b ;\,\,\,\overrightarrow y  = \overrightarrow a  - \overrightarrow b  - \overrightarrow c ;\)\(\,\overrightarrow z  =  - 3\overrightarrow b  - 2\overrightarrow c \,\). Chọn khẳng định đúng?

Cách tìm điều kiện để 3 vectơ đồng phẳng (hay, chi tiết)

* Để chứng minh ba vectơ đồng phẳng, ta có thể chứng minh bằng một trong các cách:

- Chứng minh các giá của ba vectơ cùng song song với một mặt phẳng.

- Dựa vào điều kiện để ba vectơ đồng phẳng: Nếu có m, n ∈ R: c→ = ma→ + nb→ thì a→ ; b→ ; c→ đồng phẳng.

+ Để phân tích một vectơ x ⃗ theo ba vectơ a→; b→; c→ không đồng phẳng, ta tìm các số m, n, p sao cho: x→ = ma→ + nb→ + pc→ .

Ví dụ 1: Cho hình hộp ABCD.A’B’C’D’. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Khẳng định nào sau đây sai?

A. IK→ = (1/2)AC→ = (1/2)A'C'→

B. Bốn điểm I; K; C; A đồng phẳng.

D. Ba vectơ BD→ ; IK→ ; B'C'→ không đồng phẳng.

+ A đúng do tính chất đường trung bình trong tam giác A’BC’ và tính chất của hình bình hành ACC’A’.

+ B đúng do IK là đường trung bình của tam giác AB’C nên IK // AC

⇒ bốn điểm I; K; C; A đồng phẳng.

+ D sai do giá của ba vectơ BD→ ; IK→ ; B'C'→ đều song song hoặc trùng với mặt phẳng . Do đó, theo định nghĩa sự đồng phẳng của các vectơ, ba vectơ trên đồng phẳng.

Ví dụ 2: Cho ba vectơ a→ ; b→ ; c→ không đồng phẳng. Xét các vectơ x→ = 2a→ + b→, y→ = a→ - b→ - c→, z→ = -3b→ - 2c→. Chọn khẳng định đúng?

A. Ba vectơ x→, y→, z→ đồng phẳng

D. Ba vectơ x→, y→, z→ đôi một cùng phương

Ví dụ 3: Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEF và K là tâm hình bình hành BCGF. Trong các khẳng định sau, khẳng định nào đúng?

+ Xét tam giác FAC có I; K lần lượt là trung điểm của AF và FC nên IK là đường trung bình của tam giác.

⇒ IK // AC nên IK // mp (ABCD) .

Ví dụ 4: Trong các khẳng định sau, khẳng định nào sai?

A. Nếu giá của ba vectơ a→; b→; c→ cắt nhau từng đôi một thì ba vectơ đó đồng phẳng.

B. Nếu trong ba vectơ a→; b→; c→ có một vectơ 0→ thì ba vectơ đó đồng phẳng.

C. Nếu giá của ba vectơ a→; b→; c→ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

D. Nếu trong ba vectơ a→; b→; c→ có hai vectơ cùng phương thì ba vectơ đó đồng phẳng.

Ví dụ hình lập phương ABCD.A’B’C’D’ có giá ba vecto AB→; AD→ và AA'→ đôi một cắt nhau nhưng ba vecto đó không đồng phẳng.

Ví dụ 5: Cho hình hộp ABCD.A’B’C’D’. Gọi I và K lần lượt là tâm của hình bình hành ABB’A’ và BCC’B’. Khẳng định nào sau đây sai ?

Ví dụ 6: Cho tứ diện ABCD. Trên các cạnh AD và BC lần lượt lấy M; N sao cho AM= 3MD; BN= 3NC. Gọi P; Q lần lượt là trung điểm của AD và BC. Trong các khẳng định sau, khẳng định nào sai?

A. Các vectơ BD→, AC→, MN→ đồng phẳng.

B. Các vectơ MN→, DC→, PQ→ đồng phẳng.

C. Các vectơ AB→, DC→, PQ→ đồng phẳng.

D. Các vectơ AB→, DC→, MN→ đồng phẳng.

Ví dụ 7: Cho tứ diện ABCD. Gọi M; N lần lượt là trung điểm của AD ; BC. Trong các khẳng định sau, khẳng định nào sai?

A. Các vectơ AB→, DC→, MN→ đồng phẳng

B. Các vectơ AB→, AC→, MN→ không đồng phẳng

C. Các vectơ AN→, CM→, MN→ đồng phẳng

D. Các vectơ BD→, AC→, MN→ đồng phẳng

A. Đúng vì MN→ = (1/2)(AB→ + DC→)

B. Đúng vì từ N ta dựng véctơ bằng véctơ MN→ thì MN→ không nằm trong mặt phẳng ( ABC) .

C. Sai. Tương tự đáp án B thì AN→ không nằm trong mặt phẳng (CMN) .

D. Đúng vì MN→ = (1/2)(AC→ + BD→)

Câu 1: Cho ba vectơ a→, b→, c→ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?

A. Các vectơ x→ = a→ + b→ + 2c→, y→ = 2a→ - 3b→ - 6c→, z→ = -a→ + 3b→ + 6c→ đồng phẳng.

B. Các vectơ x→ = a→ - 2b→ + 4c→, y→ = 3a→ - 3b→ + 2c→, z→ = 2a→ - 3b→ - 3c→ đồng phẳng.

C. Các vectơ x→ = a→ + b→ + c→, y→ = 2a→ - 3b→ + c→, z→ = -a→ + 3b→ + 3c→ đồng phẳng.

D. Các vectơ x→ = a→ + b→ - c→, y→ = 2a→ - b→ + 3c→, z→ = -a→ - b→ + 2c→ đồng phẳng.

Các vectơ x→, y→, z→ đồng phẳng ⇔ ∃ m, n: x→ = my→ + nz→

Câu 2: Gọi M ; N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: PI→ = k(PA→ + PB→ + PC→ + PD→)

A. k = 4                  B. k = 1/2                  C. k = 1/4                  D. k = 2

Do M ; N lần lượt là trung điểm của AC ; BD nên ta có:

Câu 3: Trong các mệnh đề sau đây, mệnh đề nào sai?

A. Vì I là trung điểm đoạn AB nên từ O bất kì ta có: OI→ = (1/2) (OA→ + OB→)

B. Vì AB→ + BC→ + CD→ + DA→ = 0→ nên bốn điểm A : B ; C ; D đồng phẳng

C. Vì NM→ + NP→ = 0→ nên N là trung điểm đoạn NP

D. Từ hệ thức AB→ = 2AC→ - 8AD→ ta suy ra ba vectơ AB→, AC→, AD→ đồng phẳng

Do AB→ + BC→ + CD→ + DA→ = 0→ đúng với mọi điểm A : B ; C ; D nên câu B sai

Câu 4: Trong các mệnh đề sau đây, mệnh đề nào đúng?

A. Từ AB→ = 3AC→ ta suy ra BA→ = -3CA→

B. Nếu AB→ = (-1/2)BC→ thì B là trung điểm đoạn AC.

C. Vì AB→ = -2AC→ + 5AD→ nên bốn điểm A ; B ; C ; D đồng phẳng

D. Từ AB→ = -3AC→ ta suy ra CB→ = 2AC→ .

+ Phương án A: Nếu AB→ = 3AC→ thì BA→ = 3CA→ ⇒ A sai.

+ Phương án B: nếu AB→ = (-1/2)BC→ thì A là trung điểm của BC. ⇒ B sai

Suy ra: AB→, AC→, AD→ hay bốn điểm A : B ; C ; D đồng phẳng. ⇒ C đúng

+ Nếu AB→ = -3AC→ thì AC→ + CB→ = -3AC→ hay CB→ = -4AC→ nên D sai.

Câu 5: Cho hình chóp S.ABC có M, N, P, Q lần lượt là trung điểm của SC; SB, AB và AC. Tìm mệnh đề sai ?

A. Hai vecto MN→ và PQ→ cùng phương

B. Ba vecto MN→; PQ→ và BC→ đồng phẳng

C. Ba vecto MN→; BC→ và AC→ đồng phẳng

+ Xét tam giác SBC có M và N lần lượt là trung điểm của SC và SB nên MN là đường trung bình của tam giác SBC.

⇒ MN là đường trung bình của tam giác.

⇒ MN // BC; MN = 1/2 BC     (1)

+ Tương tự; ta chứng minh được PQ là đường trung bình của tam giác ABC

⇒ PQ // BC; PQ = 1/2 BC     (2)

Từ (1) và ( 2) suy ra: MN//PQ nên Hai vecto MN→ và PQ→ cùng phương .

Bài 1. Cho hình hộp chữ nhật ABCD.EFGH. Gọi K là giao điểm AH và DE, I là giao điểm của DF và BH. Chứng minh rằng ba vectơ AC→,KI→,FG→ đồng phẳng.

Bài 2. Cho hình hộp ABCD.A’B’C’D’. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, AA’, A’B’, B’C’, BC, CC’. Chứng minh rằng: Ba vectơ MN→,PQ→,RS→ đồng phẳng trong đó I là tâm của hình bình hành ABB’A’ và K là tâm của hình bình hành ADD’A.

Bài 3. Cho tam giác ABC. Lấy một điểm S ngoài mặt phẳng (ABC). Trên đoạn SA lấy điểm M sao cho MS→=−2MA→ và trên đoạn thẳng BC lấy điểm N sao cho NB→=−12NC→. Chứng minh ba vectơ AB→,MN→,SC→ đồng phẳng.

Bài 4. Cho tứ diện ABCD: P, Q lần lượt là trung điểm của AB và CD. Hai điểm M, N lần lượt chia hai đoạn thẳng BC và AD theo cùng một tỉ số k. Chứng minh rằng bốn điểm P, Q, M, N nằm trên một mặt phẳng.

Bài 5. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. chứng minh rằng 3 véctơ BC→,AD→,MN→ đồng phẳng.